Lifting default for S1-valued maps

نویسنده

  • Petru Mironescu
چکیده

Let ' 2 C1([0, 1]N ,R). When 0 < s < 1, p 1 and 1  sp < N , the W s,p-semi-norm |'|W s,p of ' is not controlled by |g|W s,p , where g := eı' [3]. [This question is related to existence, for S1-valued maps g, of a lifting ' as smooth as allowed by g.] In [4], the authors suggested that |g|W s,p does control a weaker quantity, namely |'|W s,p+W 1,sp . Existence of such control is due to J. Bourgain and H. Brezis [2] when 1 < p  2, s = 1/p and to H.-M. Nguyen [10] when N = 1, p > 1 and sp 1 or when N 2, p > 1 and sp > 1. In this Note, we establish existence of control for all s < 1, p 1 and N .

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sobolev maps on manifolds: degree, approximation, lifting

In this paper, we review some basic topological properties of the space X = W s,p(M ;N), where M and N are compact Riemannian manifold without boundary. More specifically, we discuss the following questions: can one define a degree for maps in X? are smooth or not-farfrom-being-smooth maps dense in X? can one lift S1-valued maps?

متن کامل

Decomposition of S1-valued maps in Sobolev spaces

Let n ≥ 2, s > 0, p ≥ 1 be such that 1 ≤ sp < 2. We prove that for each map u ∈W s,p(Sn;S1) one can find φ ∈ W s,p(Sn;R) and v ∈ W sp,1(Sn;S1) such that u = ve. This yields a decomposition of u into a part that has a lifting in W , e, and a map "smoother" than u but without lifting, namely v. Our result generalizes a previous one of Bourgain and Brezis (which corresponds to the case s = 1/2, p ...

متن کامل

BV -maps with values into S1: graphs, minimal connections and optimal lifting

The aim of this paper is to extend to the higher dimension n ≥ 2 the results from [11] about minimal connections and optimal lifting of maps of bounded variation with values into S. More precisely, we first outline the link between lifting and connections of maps in BV (B, S), Theorem 4.4. Secondly, we write in an explicit way the energy of the optimal lifting of BV -maps, Theorem 4.8. Finally,...

متن کامل

Lifting of S-valued Maps in Sums of Sobolev Spaces

We describe, in terms of lifting, the closure of smooth S-valued maps in the space W ((−1, 1) ;S). (Here, 0 < s <∞ and 1 ≤ p <∞.) This description follows from an estimate for the phase of smooth maps: let 0 < s < 1, let φ ∈ C∞([−1, 1] ;R) and set u = e. Then we may split φ = φ1 + φ2, where the smooth maps φ1 and φ2 satisfy (∗) |φ1|W s,p ≤ C|u|W s,p and ‖∇φ2‖ Lsp ≤ C|u| p W s,p . (∗) was proved...

متن کامل

Structure of the Fixed Point of Condensing Set-Valued Maps

In this paper, we present structure of the fixed point set results for condensing set-valued map. Also, we prove a generalization of the Krasnosel'skii-Perov connectedness principle to the case of condensing set-valued maps.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008